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SHORTENING SPACE CURVES
AND FLOW THROUGH SINGULARITIES

STEVEN J. ALTSCHULER & MATTHEW A. GRAYSON

Abstract

When a closed curve immersed in the plane evolves by its curvature vec-
tor, singularities can form before the curve shrinks to a point. We show
how to use the curvature flow on space curves to define a natural contin-
uation of the planar solution for all time.

0. Introduction

When a simple closed curve in the plane evolves by the curvature flow,
it shrinks to a point in finite time, becoming round in the limit ([4] [5]).
When the curve is not simple, however, singularities can form in finite time
as loops pinch off to form cusps. The classical machinery for short-time ex-
istence of solutions to the curvature flow breaks down when the curvature
becomes unbounded. This is not to say that it cannot be continued. In [2],
Angenent shows that the singular curves are nice enough that, with some
possible trimming, they may be used as initial data for the curve shorten-
ing flow. Solutions after the singularity have fewer self-intersections than
before.

About ten years ago, Calabi suggested a method for flowing through
planar singularities using space curves. The idea is to take a family I of
embedded space curves limiting on the immersed plane curve, and then
define a flow through the singularity as the limit of the flows in T,

Several points must be checked:

(1) The space curves must be non-singular for longer than the planar
curve.

(2) The space curves must converge to a planar curve at later times.

(3) The limit planar curve should be independent of I'.

Definition 0.1. A ramp is a space curve which steadily gains height,
that is, its tangent vector has positive vertical component at all points.

Received January 17, 1990 and, in revised form, November 26, 1990. The first author’s
research was supported in part by an Alfred P. Sloan Doctoral Dissertation Fellowship.



286 STEVEN J. ALTSCHULER & MATTHEW A. GRAYSON

radi

FIGURE 1. A TORUS CURVE

From ¥ = —k>v , one computes
a9 g (138 2 0 a d

With these formulas, we may now compute all related flows for the
evolution. The evolution of the tangent vector 7T is
8T 8’T |aT/|?
1.9 = 41— T
(1.9) ot 0 52 ; as

The evolution equation for k* = |<92T/<9s2|2 is

o (|aT?\ o [|oT| a*’r|” ot/
1. === == | |=5] | -2|= ——
(1.10) ot ( ds ) ds || gs2 2 5% +4 as
k and 7 evolve in the following manner:
ok 8%k 2 2

11 — = -1
(1.11) TR +k(k"—1
and

(1.12) ?—z=a—2r+2l%g+21 (ﬁ—l<%>2+k3) .
at  gs? k 8s ds k\os: k\ds

Here is the strange behavior of 7 alluded to in the introduction.
Namely, that the torsion can blow up even though the curvature remains
bounded. Helices on a torus exhibit this behavior.

The evolution equation moves points on the outer edge of the torus
inwards, while, if the pitch is sufficiently small, it starts to move points of
the curve on the inside of the torus outwards. Before too long, though,
the whole curve moves within the inner radius, so the inside points must
change direction (see Figure 1). At that time an inflection point (k = 0)
is created. We show that the evolution equation ignores the singularities
in the torsion.
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The following theorem states that, regardless of the behavior of 7,
bounded curvature k& implies long-time existence.

Theorem 1.13. If k is bounded on the time interval [0, o), then there
exists an &€ > 0 such that y(-, t) exists and is smooth on the extended time
interval [0, a+¢).

Proof. The proof proceeds by induction. Assume that K= |‘;’9—f|2 <M
on our time interval. The first induction step is to bound |82T/832|2.
Then we bound all higher derivatives.

By the rules for differentiation we obtain

2 2 2
9 _9 _s
8t _asz
3 2
(1.14) PTG S YL Y A Y
as®>’ 9s ds*
T
82

Using the facts that (T, 9°T/9s”) = —(8L, 2T} k* = |2L> < M, and
(X, Y)<|X||Y| we have

ot
as?

a3t
s>

T

’T a°T
ds*

‘8T 2
as®

as

8T
ds*

+4

2 2 2
a (|t} L &% [|o’r| ) _,(|2°T| _,pn|2°T
ot \ | as? ~ 95 \|as? as’ as*
o[’
(1.15) +16M | —=
as
2 24 |2]
< o a°T a T
~ a5 || as* ’

so the maximum principle implies that |¢92T/<9s2|2 has at most exponen-
tial growth. Therefore, |82T / ¢9sz|2 remains bounded on the (finite) time
interval.

From above, we conclude that |% 2 is bounded. Therefore, at time «,

the tangent vectors have a well-defined limit and give a C ' curve.
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In general,

8 (0"T\ _ 2 (9°T\ ,/0"™"'T oT\ .
ot \ as" ] as* \ os? gs™t1’ Bs

2 an n 2
aT 8T+2n<8T aT>T

D == —>
+(n+ )las as" as"’ os*

(1.16) o"T 9T\ oT
#2000 (G 55 )

o't o't\ /o T o'T
+ Z Nijk<ai’aj><ak’ai >
i+jtk=1+2 s o8 s s

0<i, ), k<l
where the coefficients Ny =N, jk(n) . Thus

o (1T _ 2% (|12"T [\ _, (|2"'T| _|eT|jo 1|\’
at \| as" = 552 \| as” §s™H! ds || as"
aT|*|6"T|? a*r| |o"T |
+2(n+2)8_s as" " os% || as”
1.17
Y it 0 |2Z][2°T]
ds || as"
i j k i
S g | 54 e
i =l 42 s s || os S
0<i, j k<l

An application of the Peter-Paul inequality and the induction hypothesis
allows us to rewrite our equation in the form

2
(1.18) oxX < %—f +AX + B (A4, B constants).
s

The maximum principle shows that |8"7/8s"|* increases at most expo-
nentially. Hence this term is bounded on the time interval.

Therefore, [&[0"T/ ds"]|* are all bounded and the tangent vectors at
time a may be integrated to give a smooth curve. The short-time existence
theorem now allows us to flow for some more time.

2. Evolving Ramps

The helix is a good example, so we include an explicit computation of
its evolution.
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FiGURE 2. EVOLVING HELICES WITH VARYING SLOPE

Example. The helix is parametrized by

(2.1) y(z, t) = (A(t) cos(z), A(t)sin(z), B(t)z),
where A and B are functions only of time. The arc-length derivative is
2 n1/2 9 o
(2.2) (4*+B) 5 =55
and the evolution of y is explicitly given by
04 84 . OB (—Acos(z), —Asin(z), 0)
2. —_— - —z|= 4 .
(2.3) <8t cos(z), 57 sin(z), 57 z) 1B
Hence
o4 2 23! OB
(24) =AM +E) L F=0,
and solutions are given by
2 2
(2.5) A(zt) + B log(A(t)) = —t + A(g) + B log(A(0)).

Note that, for positive B, A(t) converges to but never reaches zero (see
Figure 2).

The curvature k = A/ (A2 + B2) — 0 as t — co whereas the torsion
T = B/(A2 +B% — B™! as t — . So the limiting curve is a straight
line, and the non-zero torsion reflects the fact that the frame is twisting
along the limiting curve.

Now we are ready to use an argument which shows that the curvature
remains bounded for all time on a curve which has positive inner product
with a fixed vector. It was pointed out to us that Ecker and Huisken [3]
employ similar type arguments.

Theorem 2.6. Let y(0) be a ramp. Then

(1) y(¢t) isaramp forall t >0,
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(2) k is bounded from above for all time, and

(3) y converges to a straight line in infinite time.

Proof Let V = (% be the unit tangent vector field to the height coor-
dinate. Then (7', V) > 0 initially. A computation shows

8 8*

2. — =2
(2.7) 57> V) =25
The maximum principle implies that the minimum of this quantity is
increasing. This proves the first assertion.

Since (T, V) > 0 for all time (that is, the curve remains a graph), we
may divide by this term! We obtain the following evolution equation:

9 <_k_> _ (_k,)
2 S oS (R )k
(T,VYas' > 'os\(T,V) (T,vy
The maximum principle implies that the maximum of k/(T, V) is
decreasing. From ||(T', V)| < 1 it follows that the maximum of k is
bounded by some constant for all time. We may then use the arguments

of the previous section to imply infinite time existence of solutions.
Integrating over one period of the ramp yields

(T, Vy+KXT, V).

(2.9) / k*dsdt < length(3(0)).
=0 Jy(t)

The fact that % fy(z) k*ds is bounded by a constant for all time and our

previous estimates implies that k — 0 as ¢ — oo. Hence the ramp

becomes a straight line.

3. The area estimate

In order to prove convergence as / — 0, we must have some way of
controlling the separation of two nearby solutions over time. We will let
[ denote the length of I'j(0).

The area estimate 3.1. Given 0 < f < @ < 1, the area bounded by the
curves n(I' (t)) and n(Ty(2)) is < (I + 27t} a.

The central tool is a lemma about the area of minimal disks spanning
an evolving space curve.

Lemma 3.2. Let A(t) be the area of the minimal disk D(t) bounded
by a closed curve C(t) in space evolving by the curvature flow. Then A'(t)
< -2m.
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C

FIGURE 3. THE MINIMAL DISK SPANNING A SPACE CURVE

Proof. The first variation of the area of a minimal disk is zero, so the
only change in area comes from the motion of the boundary, namely the
curve. This area change is the inner product of the curvature vector of
the curve with the outward pointing vector tangent to the disk. This is
minus the geodesic curvature, kg , of the boundary (see Figure 3). The
Gauss-Bonnet theorem states that 2z = f,xda + [  k,ds, where x is
the Gaussian curvature of D . Since D is minimal, ¥ < 0 and the lemma
follows.

Proof of area estimate. How are we going to get a minimal disk into
the picture when all we have are ramps (of different periods, yet)? Here
is the trick. Let p be some point on I'y(0). Take n turns of I (0),
where n = [1/4/a, connecting two lifts of p. Do the same for I’ p With
n = [1/4/a] . Now vertically translate the two coils so that their endpoints
have z coordinates +na/2 and +nf/2. Finally, connect the two upper
endpoints of the coils with a vertical line of length n(a — £)/2, and the
same for the lower endpoints. We now have a closed curve which bounds
a disk of area < nzl(a - B)/2+nlla+ B) <09 if a<0.01 (see Figure
4, next page).

The coils will evolve by curve shortening. Their endpoints will keep
fixed z coordinates, and the connecting arcs will also evolve by curve
shortening with boundary conditions determined by their endpoints. Since
the connecting arcs are ramps, and the behavior of their endpoints are
controlled by the curves I' (¢) and I’ /,(t) , they exist and are smooth for
all time.

If we were 1o let these endpoints go freely, the area of the minimal disk
spanned by this closed curve would decrease faster than 27 . Since we
are holding the endpoints back, we increase the area rate by the sum of
the four exterior angles, which is < 47 . Hence, the area of this disk is
bounded by ! + 2zt for all time.
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FiGURE 4. THE DISK BETWEEN THE TWO RAMPS

FIGURE 5. THE DISK AND ITS PROJECTION AT A LATER
TIME

Now notice that the two arcs connecting the coils have a reflection in the
xy-plane symmetry in both their initial conditions and in their boundary
conditions for all time. This implies that the symmetry is maintained
for the connecting arcs themselves for all time. Therefore, the projection
of the minimal disk is a planar surface covering the region between the
projections of I' (#) and I‘ﬂ(z) at least n times (see Figure 5).

It follows that the area between the curves is bounded by (/ + 27t)/a.
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4. The dilation-invariant estimates

The area estimate gives us some control over nearby solutions. In order
to get better convergence results, we need bounds on curvature and its
derivatives after a short time.

Definition 4.1." Consider a space curve which also has the good fortune
of being a graph r =r(z). We define the graph flow to be

r
4.2 = _—2z2 _.
(42) S TN

It is easily seen that a graph r =r(z) evolving by the graph flow differs
from the curve shortening flow only by a tangential motion.

A theorem of the following type was first brought to our attention by G.
Huisken. Our proof uses a technique taught to us by R. Hamilton (lecture
notes).

Theorem 4.3. Let r=r1(z, t) bea solution to the graph flow for (x, t) €
[0, 81 x [0, a) = Q. Assume that |r,| < 1/10 holds on Q. Then

52
22(6 — z)?

(4.4) K

1
<+
-t
is true on Q.

Proof Tt is easy to compute the following equalities from the above
equation: ’

2
2 (A 2 2 2
(4.5) (Ir, "), = PR ; Irzzlzz =2(1+{r,[)Ir,|” — 4(r,, 1,)
and
2 2 2
2 — (lrtl )zz ertzl 4lr[| (rtZ’ l'Z)
(46) (lrtl )t - 2 2 2 )
I+]r,] I+]r, I+,

The maximum principle implies that |rz|2 < 1 is preserved for all time.
Therefore, we may consider the quantity

Ir,
(4.7) Q=

=t .
1—|r,|
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Thus,
2
Q = QZZ _ 8(1 + |rz|2)<rz’ 1't) |rt|2 _ 8(1'2, l't)<l't’ 1-tz)
t
1+r, (1—1r,*° (1—1r,*
— 2|rtz|2 _ 4<l'tz s l'z)ll't|2
2 2 2 2
=0+, =D+
20+ Pt A, )
(1—r, % (1-1r,P)?
2 2
(4.3) SO A1 AN L LR
- 2.2
1+, (=, A=A+
~ 2, | o
(1= +EP) (1=
QZZ + 1

= 2 2
1+|r,| I—r|
2 4 2 2
8|l‘t2| |1‘Z||1'tl z| 4|l‘tz] Irzl |l't| - 2|l'tZ|
2 2
1 —|r,| I+]r,

—|r 2

-0,

Let Z be the quantity in braces. Since we are assuming that |1'Z|2 <
1/100,

100 1 2 100, 4
7 < {822 — 2. _
) < (89 +4) gl - 2 Jorin.t* =l
2 2 4
< - [rtzl + 2|1't2||1't| - |1‘t| < 0.
Therefore
Q 2
4.10 < zz _ _ 0*°.
(4.10) Q, < TP Q

It is not hard to check that if f = z(d — z), then g,, < g2 for g =
5°f7%. So, letting h = 1/t + g we have

(4.11) (Q@-h), <(Q—h),, = (Q-h)}(Q+h)

Since max(Q(-, 0) — 4(-, 0)) < 0, the maximum principle implies Q < A
for all ¢t > 0 and the result follows.
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5. The convergence of ramps

Definition 5.1. A space curve is ¢-flat, e-very flat, or g-extremely flat if
given any two points connected by an arc of length < ¢, the angle between
their tangent vectors is < 0.1, < 0.01, or < 0.001, respectively.

Note that e-extremely flat implies 10e-very flat and therefore 100&-flat.

Lemma 5.2 (graph-like). If a curve has [ k*ds < M, then it is
1/ (10*M)Alaz, 1 /(10* M)-very flat, and 1/(10°M)-extremely flat.

Proof. These are immediate consequences of the Holder inequality ap-
plied to the total change in angle [ |k|ds.

Lemma 5.3. Let y, be a curve with suplk| < M and let y, be a curve
which is e-flat, with ¢ < 1/M, so that, a priori, y, is much wigglier than
7o - Now suppose further that both curves are ramps with very small vertical
periods < 10752, and that the area between their planar projections is
also < 107%%. Then Y, is actually c! close to Yo SO that it is at least
1/(1000M)-very flat.

The important point is that the conclusion is independent of ¢.

Proof. Note that y, is really 1/ (103M )-extremely flat. Because of the
small pitch of the ramps, every tangent vector to both curves is nearly
horizontal. If any tangent vector to », differed significantly from y, in
either location or direction, the curves could not get close enough to keep
the area between them small.

Lemma 5.4. Given a positive ¢ < 10™* and a curve which is e-very flat
at time t, then for all t, € [¢,, t, + 83] , the curve is e-flat.

This is a generalization of an argument found in [2].

Proof. Tt suffices to show that the tangent vectors to the curve do not
themselves move very far in space or direction. In time P , o curve
can leave a tubular neighborhood of radius V2 < ¢ /50 about itself;
compare the curve to a shrinking sphere about a point outside that neigh-
borhood. Suppose that some tangent vector 7'(p,, ¢,) differs by more
than 0.05 from T'(p,, ¢,), with d(p,, p;) < &/5. Then there would be a
plane nearly parallel to T'(p,, ¢;) with at least two intersections with the
curve at time ¢, . At time ?#,, however, the curve points in the direction
T(p,, t,) atthe point p,. Since the curve turns very slowly (it is e-very
flat), it crosses the plane at a sufficiently steep angle so that the connected
component of the intersection of the plane with the tubular neighborhood
contains no other intersections with the curve. Since the distance to a
plane evolves by a strictly parabolic equation, the number of intersections
between the curve and a fixed plane inside this connected component can-
not increase. This is a contradiction. Hence we conclude that the curve
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.02¢ neighborhood
of Yo

FIGURE 6. WHY FLAT CURVES STAY FLAT FOR SHORT
TIMES

turns by less than 0.1 in any arc of length ¢ over the designated time
interval (see Figure 6).

Theorem 5.5. Given any time t, and an ¢ < 1/ (1041 ), there is a time
t; € [t,, ty+e] such that T',(t) converges smoothly to a limiting plane curve
forall telty,t,+e.

Proof. Since I'(t) = — J Kds , there is some time ¢, € [¢,, ¢,+¢&] when
fl"a(tl) kK*ds < /e, hence T (¢,) is az-very flat. By the last lemma, I (2)
is ¢*-flat for all ¢ € [z, ¢+ 86] . The dilation-invariant estimates then tell
us that sup(k) < ¢”> at time t, =t + %86 . Since supk increases no
faster than its cube, we know that sup(k) < 2¢7° forall te [z, ¢, + 86] .

For B <« thereisatime ¢; € [¢,, 12+87] in which fr,,(ta) K*ds <le™".

Therefore T’ 5 (23) 1s ss-very flat. The above lemma shows that it is actually

flat on the same scale as I (¢,), that is, & /100-very flat. Remember that
the area between the projections is < (/ + 2nt)/a, which can be chosen
arbitrarily small, say < ¢?° . The dilation-invariant estimates then imply
that T';(7) has supk < 2¢7 for a time interval on the order of &° . This is
independent of £, so at times arbitrarily close to the singularity, indeed,
close to any time, the family I',(¢) has uniformly bounded curvature.
Hence, given the area estimate, the family converges uniformly in C !
(see Figure 7).

Now use the dilation-invariant estimates to show that these curves have
uniform bounds on the spatial derivatives of curvature (see [1]). Again,
this together with the area estimate gives C™ convergence. g.e.d.
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Attime s = To’
I , may look singular.

At time ¢ = TZ’
I, is fairly smooth
but FB may be awful.

but

The area between the

At time ¢ = T3,

l“a is still smooth projections is very tiny,
and now I, is also nice, and so both curves are
but at a much smaller scale. nice on the same scale.

FIGURE 7. How I' | GIVES UNIFORM CONTROL OVER ALL
1“5 WITH f < «.

Once we know that the space curves yield smooth solutions past any
singularity, we can conclude

Theorem 5.6. The number of singular times is finite. The limiting curve
is smooth at all other times and evolves by the curvature flow.

Proof. Note that the essential property of ramps in the previous dis-
cussions is that their solutions exist past the time of singularity for the
planar curve I';. One may also approximate I, by a family of planar
curves as long as this family exists past the time of the singularity.

When a plane curve forms a singularity, a loop must pinch off, reducing
the number of essential self-intersections (those that cannot be perturbed
away with small area change). Such a curve has an arbitrarily close (in
the sense of area) family of smooth, planar approximations with fewer
self-intersections. These planar curves also converge (in their family pa-
rameter) in area to the limit of the approximating ramps I'_(¢). The area
of the region between #(I" (f)) and the planar approximation increases
no faster than 27t\/a. Thus the smooth plane curves converge smoothly
to the limiting planar solutions on the same time intervals as the ramps.
Since the number of self-intersections of the smooth planar solutions does
not increase, and nonessential intersections vanish instantly, we conclude
that the number of self-intersections of the planar limit I'j(¢) decreases
after a singularity.
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Now we have smooth convergence of ramps on an open dense set of
times, and a necessarily finite number of times for singularities in the
planar limit, if it exists at all times. But the planar solution is g-flat
for some & between singular times, and the ¢ is fixed away from the
singular times. The area estimates and the dilation-invariant estimates
then imply long-term smooth convergence of any approximating family. In
particular, both the ramps and the smooth planar approximations converge
smoothly to I'y(¢#) between singular times, and until I'y(¢) shrinks to a
point. q.e.d.

We could have used the plane curves to extend the flow through the sin-
gularity, and it would have been easier, for the area estimate is immediate.
Our purpose has been to show how the space curve approximation works
for all time, and not just between singularities.
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